This multiflash photograph of a ping pong ball shows examples
of motion in two dimensions. The arcs of the ping pong ball
are parabolas that represent “projectile motion.” Galileo

|8

analyzed projectile motion
into its horizontal and
vertical components; the gold
arrow represents the down-
ward acceleration of gravity,
g We will discuss how to
manipulate vectors and how
to add them. Besides analyzing
projectile motion, we will also
see how to work with relative
velocity.

CHAPTER

Kinematics in Two Dimensions;

description of the motion of objects that move in paths in two (or three)

dimensions. In particular, we discuss an important type of motion known as
projectile motion: objects projected outward near the surface of the Earth, such
as struck baseballs and golf balls, kicked footballs, and other projectiles. Before
beginning our discussion of motion in two dimensions, we first need to present a
new tool—vectors—and how to add them.

EXT Vectors and Scalars

We mentioned in Chapter 2 that the term velocity refers not only to how fast
something is moving but also to its direction. A quantity such as velocity, which
has direction as well as magnitude, is a vector quantity. Other quantities that are
also vectors are displacement, force, and momentum. However, many quantities
have no direction associated with them, such as mass, time, and temperature.
They are specified completely by a number and units. Such quantities are called
scalar quantities.

I n Chapter 2 we dealt with motion along a straight line. We now consider the
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FIGURE 3-1 Car traveling on a
road. The green arrows represent
the velocity vector at each position.

FIGURE 3-2 Combining vectors

in one dimension.

Resultant = 14 km (east)

g 8 km ' '6Ikm

(a)

Resultant =2 km (east)
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==
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FIGURE 3-3 A person walks 10.0 km east and then 6
5.0 km north. These two displacements are represented by -
the vectors D and D,, which are shown as arrows. The 43
resultant displacement vector, Dy, which is the vector sum
of D; and D,, is also shown. Measurement on the graph

x (km)
East

x (km)
East

Drawing a diagram of a particular physical situation is always helpful in
physics, and this is especially true when dealing with vectors. On a diagram, each
vector is represented by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents. The length of the arrow is
drawn proportional to the magnitude of the vector quantity. For example, in
Fig. 3-1, green arrows have been drawn representing the velocity of a car at
various places as it rounds a curve. The magnitude of the velocity at each point
can be read off Fig. 3-1 by measuring the length of the corresponding arrow
and using the scale shown (1 cm = 90 km/h).

When we write the symbol for a vector, we will always use boldface type, with
a tiny arrow over the symbol. Thus for velocity we write v. If we are concerned
only with the magnitude of the vector, we will write simply v, in italics, as we do
for other symbols.

4 Addition of Vectors—Graphical Methods

Because vectors are quantities that have direction as well as magnitude, they
must be added in a special way. In this Chapter, we will deal mainly with
displacement vectors, for which we now use the symbol D, and velocity vectors, v
But the resulis will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
used for adding vectors if they are in the same direction. For example, if a
person walks 8km east one day, and 6km east the next day, the person will
be 8km + 6km = 14km east of the point of origin. We say that the net or
resultant displacement is 14 km to the east (Fig. 3—2a). If, on the other hand, the
person walks 8 km east on the first day, and 6 km west (in the reverse direction)
on the second day, then the person will end up 2 km from the origin (Fig. 3-2b),
so the resultant displacement is 2km to the east. In this case, the resultant
displacement is obtained by subtraction: 8 km — 6km = 2 km.

But simple arithmetic cannot be used if the two vectors are not along the same
line. For example, suppose a person walks 10.0km east and then walks 5.0 km
north. These displacements can be represented on a graph in which the positive
y axis points north and the positive x axis points east, Fig. 3-3. On this graph, we
draw an arrow, labeled D, to represent the displacement vector of the 10.0-km
displacement to the east. Then we draw a second arrow, D,, to represent the
5.0-km displacement to the north. Both vectors are drawn to scale, as in Fig. 3-3.

After taking this walk, the person is now 10.0 km east and 5.0 km north of
the point of origin. The resultant displacement is represented by the arrow
labeled Dy in Fig. 3-3. Using a ruler and a protractor, you can measure on this
diagram that the person is 11.2 km from the origin at an angle 8 = 27° north of
east. In other words, the resultant displacement vector has a magnitude of
11.2km and makes an angle 6 = 27° with the positive x axis. The magnitude
(length) of Dy can also be obtained using the theorem of Pythagoras in this
case, since Dy, D,, and Dy form a right triangle with Dy as the hypotenuse. Thus

Dr =\/D% + D} = \/(100km)? + (5.0km)? = \/125km? = 11.2 km,

You can use the Pythagorean theorem, of course, only when the vectors are
perpendicular to each other.

y (km)
MNorth

with ruler and protractor shows that Dy has a magnitude of  Wwegt ——tEk . ;

11.2 km and points at an angle & = 27° north of east. d
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The resultant displacement vector, Dy, is the sum of the vectors D, and D,.
That is,

ﬁRzﬁl+ﬁz.

This is a vector equation. An important feature of adding two vectors that are
not along the same line is that the magnitude of the resultant vector is not equal
to the sum of the magnitudes of the two separate vectors, but is smaller than
their sum:

Dy < Dy + D,. [vectors not along the same line]

In our example (Fig. 3-3), D = 11.2km, whereas D; + D, equals 15km. Note
also that we cannot set Dy equal to 11.2 km, because we have a vector equation and
11.2km is only a part of the resultant vector, its magnitude. We could write some-
thing like this, though: Dy = D, + D, = (11.2km, 27° N of E).

EXERCISE A Under what conditions can the magnitude of the resultant vector above
be DR = Dl + DZQ

Figure 3-3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—call it D,—to scale.

2. Next draw the second vector, D,, to scale, placing its tail at the tip of the
first vector and being sure its direction is correct.

3. The arrow drawn from the tail of the first vector to the tip of the second
vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors
can be translated parallel to themselves (maintaining the same length and
angle) to accomplish these manipulations. The length of the resultant can be
measured with a ruler and compared to the scale. Angles can be measured with
a protractor. This method is known as the tail-to-tip method of adding vectors.

It is not important in which order the vectors are added. For example, a
displacement of 5.0 km north, to which is added a displacement of 10.0 km east,
yields a resultant of 11.2km and angle 6 = 27° (see Fig. 3-4), the same as
when they were added in reverse order (Fig. 3-3). That is,

Vi+V,=V,+ V. West=tal"

The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector to the tip of the
last one added. An example is shown in Fig. 3-5; the three vectors could repre-
sent displacements (northeast, south, west) or perhaps three forces. Check for
yourself that you get the same resultant no matter in which order you add the
three vectors.

FIGURE 3-5 The resultant of three vectors: VR =V, +V, + Vg.

///vl+v2 +

1
|

Vector equation

Tail-to-tip tmehod
of

adding vectors

y (km)
North

South

FIGURE 3-4 If the vectors are
added in reverse order, the resultant
is the same. (Compare to Fig. 3-3.)
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Parallelogram method of
adding vectors

FIGURE 3-6 Vector addition by
two different methods, (a) and (b). =
Part (c) is incorrect.

> CAUTION
Be sure to use the correct diagonal
on parallelogram to get the resultant

FIGURE 3-7 The negative of a
vector is a vector having the same
length but opposite direction.

FIGURE 3-8 _Subtracting two
vectors: V, — V.

A second way to add two vectors is the parallelogram method. It is fully
equivalent to the tail-to-tip method. In this method, the two vectors are drawn
starting {from a common origin, and a parallelogram is constructed using these
two vectors as adjacent sides as shown in Fig. 3-6b. The resultant is the diagonal
drawn from the common origin. In Fig. 3-6a, the tail-to-tip method is shown,
and it is clear that both methods yield the same result.

(a) Tail-to-tip

(b) Parallelogram

It is a common error to draw the sum vector as the diagonal running
between the tips of the two vectors, as in Fig. 3—6c¢. This is incorrect: it does not
represent the sum of the two vectors. (In fact, it represents their difference,
V, — Vi, as we will see in the next Section.)

CONCEPTUAL EXAMPLE 3-1 | Range of vector lengths. Suppose two
vectors each have length 3.0 units. What is the range of possible lengths for the
vector representing the sum of the two?

RESPONSE The sum can take on any value from 6.0 (=3.0 + 3.0) where the
vectors point in the same direction, to 0 (=3.0 — 3.0) when the vectors are
antiparallel.

EXERCISE B If the two vectors of Conceptual Example 3-1 are perpendicular to each
other, what is the resultant vector length?

Subtraction of Vectors, and
Multiplication of a Vector by a Scalar

—

Given a vector V, we define the negative of this vector (—V) to be a vector with
the same magnitude as V but opposite in direction, Fig. 3-7. Note, however, that
no vector is ever negative in the sense of its magnitude: the magnitude of every
vector is positive. Rather, a minus sign tells us about its direction.

We can now define the subtraction of one vector from another: the differ-
ence between two vectors V, — Vl is defined as

VQ - Vl = VZ + (_Vl)

That is, the difference between two vectors is equal to the sum of the first plus
the negative of the second. Thus our rules for addition of vectors can be applied
as shown in Fig. 3-8 using the tail-to-tip method.

v, Y v -V L N
/-2 =V 2 W
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A vector V can be multiplied by a scalar c¢. We define their product so that
¢V has the same direction as V and has magnitude cV. That is, multiplication of
a vector by a positive scalar ¢ changes the magnitude of the vector by a factor ¢
but doesn’t alter the direction. If ¢ is a negative scalar, the magnitude of the
product ¢V is still ¢V (without the minus sign), but the direction is precisely
opposite to that of V. See Fig. 3-9.

FIGURE 3-9 Multiplying a vector V by a scalar ¢
gives a vector whose magnitude is ¢ times greater
and in the same direction as V (or opposite direction
if ¢ is negative).

m Adding Vectors by Components

Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a
more powerful and precise method for adding vectors. But do not forget
graphical methods—they are always useful for visualizing, for checking your
math, and thus for getting the correct result.

Consider first a vector V that lies in a particular plane. It can be expressed
as the sum of two other vectors, called the components of the original vector.
The components are usually chosen to be along two perpendicular direc-
tions. The process of finding the components is known as resolving the vector  Resolving a vector into components
into its components. An example is shown in Fig. 3—-10; the vector V could be
a displacement vector that points at an angle 6 = 30° north of east, where
we have chosen the positive x axis to be to the east and the positive y axis
north. This vector V is resolved into its x and y components by drawing
dashed lines out from the tip (A) of the vector (lines AB and AC) making
them perpendicular to the x and y axes. Then the lines 0B and OC repre-
sent the x and y components of Vv, respectively, as shown in Fig. 3-10b.
These vector components are written V, and V We generally show vector
components as arrows, like vectors, bul drmhcd The scalar components, Vy
and V), are numbers, with units, that are given a positive or negative sign
depending on whether they point along the positive or negative x or y axis,
As can be seen in Fig, 3-10, V, + V = V by the parallelogram method of
adding vectors.

FIGURE 3-10 Resolving a vector V into its
components along an arbitrarily chosen set of
x and y axes. The components, once found,
themselves represent the vector. That is, the
components contain as much information as
the vector itself.

(b)

Space is made up of three dimensions, and sometimes it is necessary to
resolve a vector into components along three mutually perpendicular directions.
In recmn;:,ul.;r coordinates the components are V,, V,,, and V,. Resolution of a
vector in three dimensions is merely an extension of the above technique. We
will mainly be concerned with situations in which the vectors are in a plane and
two components are all that are necessary.

To add vectors using the method of components, we need to use the
trigonometric functions sine, cosine, and tangent, which we now review.
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/ h’/ 0 i
FIGURE 3-11 Starting with an angle 6 as 0 /{9

in (a), we can construct right triangles of a
different sizes, (b) and (c), but the ratio of
the lengths of the sides does not depend on

the size of the triangle.

FIGURE 3-12 Finding the
components of a vector using
trigonometric functions.
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Given any angle 6, as in Fig. 3—11a, a right triangle can be constructed by
drawing a line perpendicular to either of its sides, as in Fig. 3—11b. The longest
side of a right triangle, opposite the right angle, is called the hypotenuse, which
we label h. The side opposite the angle 6 is labeled o, and the side adjacent is
labeled a. We let &, 0, and a represent the lengths of these sides, respectively.
We now define the three trigonometric functions, sine, cosine, and tangent
(abbreviated sin, cos, tan), in terms of the right triangle, as follows:

3 side opposite o
sinf = — = —
hypotenuse h
side adjacent ¢
cosf = —————— = — 3-1)
hypotenuse h
side opposite
tanf = —— e ==

side adjacent  a

If we make the triangle bigger, but keep the same angles, then the ratio of the
length of one side to the other, or of one side to the hypotenuse, remains
the same. That is, in Fig. 3-11c we have: a/h = a'/h’; o/h = o'/h’; and
o/a = o'/a’. Thus the values of sine, cosine, and tangent do not depend on
how big the triangle is. They depend only on the size of the angle. The values of
sine, cosine, and tangent for different angles can be found using a scientific
calculator, or from the Table in Appendix A.
A useful trigonometric identity is

sin®f + cos’@ = 1 3-2)
which follows from the Pythagorean theorem (0 + a®> = h? in Fig. 3—-11). That is:
o & _ol+ad W

sin20+00520=ﬁ+ﬁ= ot

(See also Appendix A for other details on trigonometric functions and identities.)

The use of trigonometric functions for finding the components of a vector is
illustrated in Fig. 3-12, where a vector and its two components are thought of as
making up a right triangle. We then see that the sine, cosine, and tangent are as
given in the Figure. If we multiply the definition of sin6 = V,/V by V on both
sides, we get

V, = Vsiné. (3-3a)
Similarly, from the definition of cos 6, we obtain
V., =V cosé. (3-3b)

Note that 6 is chosen (by convention) to be the angle that the vector makes
with the positive x axis,

Using Eqgs. 3-3, we can calculate V, and V), for any vector, such as that illus-
trated in Fig. 3-10 or Fig. 3-12. Suppose V represents a displacement of 500 m
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Vy=Vsin 0=250m

V,=Vcos 6 =433m .
FIGURE 3-13 (a) Vector V repre-
V2 V2=
V=it L5=eom angle north of east. (b) The compo-
X nents of V are V, and V,,, whose
East magnitudes are given on the right.

(®)

in a direction 30° north of east, as shown in Fig. 3-13. Then V = 500 m. From
a calculator or Tables, sin30° = 0.500 and cos30° = 0.866. Then

V, = Vcosd = (500 m)(0.866) = 433 m (east),
V, = Vsin6 = (500 m)(0.500) = 250 m (north).

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, V, and V. Two ways
2. We can give its magnitude V and the angle it makes with the positive x axis. Z’ Jé’c ig’fy

We can shift from one description to the other using Egs. 3-3, and, for the
reverse, by using the theorem of Pythagoras' and the definition of tangent:

V= \/Vi + V?, (3-4a) Components
v related to
_ _ magnitude and
tand = Vv, (3-4b) direction

as can be seen in Fig. 3-12.

We can now discuss how to add vectors using components. The first step is
to resolve each vector into its components. Next we can see, using Fig. 3-14,
that the addition of any two vectors V, and V, to give a resultant,
V=V + v,, implies that

_ Adding vectors
= + 8
Vi=Vie + Vi (3-5) analytically

Vy =V, + Vyy. (by components)

That is, the sum of the x components equals the x component of the resuitant,
and similarly for y. That this is valid can be verified by a careful examination of
Fig. 3-14. But note that we add all the x components together to get the x
component of the resultant; and we add all the y components together to get the
y component of the resultant. We do not add x components to y components.

If the magnitude and direction of the resultant vector are desired, they can
be obtained using Egs. 3—4.

tIn three dimensions, the theorem of Pythagoras becomes V = VZ o+ Vf, + VZ, where V, is the
component along the third, or z, axis.

FIGURE 3-14 The components of V=V, +V,
are Vy = Viy + Vo and V,, = Vi + Vyy.

<

-——————-—————»I

Vi
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Choice of axes can simplify
effort needed

%
Post 0 \ East
office D

FIGURE 3-15 Example 3-2.

(a) The two displacement vectors,
D, and D,. (b) D, is resolved into
its components. (c) D; and D, are
added graphically to obtain

the resultant D. The component
method of adding the vectors is
explained in the Example.

= PROBLEM SOLVING
[dentify the correct quadrant by
drawing a careful diagram

The components of a given vector will be different for different choices of
coordinate axes. The choice of coordinate axes is always arbitrary. You can often
reduce the work involved in adding vectors by a good choice of axes—for
example, by choosing one of the axes to be in the same direction as one of the
vectors. Then that vector will have only one nonzero component.

Mail carrier’s displacement. A rural mail carrier leaves
the post office and drives 22.0 km in a northerly direction. She then drives in a
direction 60.0° south of east for 47.0 km (Fig. 3-15a). What is her displacement
from the post office?

APPROACH We resolve each vector into its x and y components. We add the
x components together, and then the y components together, giving us the x
and y components of the resultant. We choose the positive x axis to be east
and the positive y axis to be north, since those are the compass directions used
on most maps.

SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 3-15b. Since D, has magnitude 22.0 km and points north, it has only a y
component:

D, =0, Dy, = 22.0 km.
D, has both x and y components:

D,, = +(47.0km)(cos 60°) = +(47.0 km)(0.500) = +23.5km

D, = —(47.0km)(sin 60°) = —(47.0km)(0.866) = —40.7 km.

Notice that D, is negative because this vector component points along the
negative y axis. The resultant vector, D, has components:

D,=D,+D,= 0km+ 235km = +23.5km

D, = Dy, + D,, = 22.0km + (—40.7km) = —18.7km.
This specifies the resultant vector completely:

D, = 23.5km, D, = —18.7 km.

We can also specify the resultant vector by giving its magnitude and angle
using Eqs. 3—4:

D =7\/D% + D> =\/(23.5km)* + (~18.7km)? = 30.0km

Dy, _ -18.7km
D,  235km

tang = = —0.796.

A calculator with an INV TAN, an ARC TAN, or a TAN! key gives 6§ =
tan™'(—0.796) = —38.5°. The negative sign means 6 = 38.5° below the x axis,
Fig. 3-15c. So, the resultant displacement is 30.0 km directed at 38.5° in a
southeasterly direction.

NOTE Always be attentive about the quadrant in which the resultant vector
lies. An electronic calculator does not fully give this information, but a good
diagram does.

The signs of trigonometric functions depend on which “quadrant” the angle
falls in: for example, the tangent is positive in the first and third quadrants (from
0° to 90°, and 180" to 270°), but negative in the second and fourth quadrants; see
Appendix A-7. The best way to keep track of angles, and to check any vector
result, is always to draw a vector diagram. A vector diagram gives you something
tangible to look at when analyzing a problem, and provides a check on the results.

The following Problem Solving Box should not be considered a prescrip-
tion. Rather it is a summary of things to do to get you thinking and involved in
the problem at hand.
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T i cl Adding Vectors

Here is a brief summary of how to add two or more

vectors using components:

1. Draw a diagram, adding the vectors graphically by
either the parallelogram or tail-to-tip method.

2. Choose x and y axes. Choose them in a way, if possible,
that will make your work easier. (For example, choose
one axis along the direction of one of the vectors so
that vector will have only one component.)

3. Resolve each vector into its x and y components,

5. Add the x components together to get the x

Pay careful attention to signs: any component that
points along the negative x or y axis gets a — sign.

component of the resultant. Ditto for y:
V, = Vi, + V,, + any others
V, = V4 + V,, + any others.
This is the answer: the components of the resultant

vector. Check signs to see if they fit the quadrant
shown in your diagram (point 1 above).

showing each component along its appropriate g, If you want to know the magnitude and direction of
(x or y) axis as a (dashed) arrow. the resultant vector, use Eqs. 3—4:

4. Calculate each component (when not given) using 5 5 v,
sines and cosines. If 6; is the angle that vector V=vV;+V), tanf=-

- : N . Vi
Vi makes with the positive x axis, then: The vector diagram you already drew helps to
Vix = Vicos 8y, Viy = Visiné;.

obtain the correct position (quadrant) of the angle 6.
| i _

SANITIEEN Three short trips. An airplane trip involves three legs, +y
with two stopovers, as shown in Fig. 3-16a. The first leg is due east for 620 km; North
the second leg is southeast (45°) for 440 km; and the third leg is at 53° south of
west, for 550 km, as shown. What is the plane’s total displacement? D,
-x - +
APPROACH We follow the steps in the above Problem Solving Box. 0%o=" & ]i:Cast
SOLUTION N e
1. Draw a diagram such as Fig. 3-16a, where D,, D,, and D, represent the Dg 53 )
three legs of the trip, and Dy is the plane’s total displacement. D,
2. Choose axes: Axes are also shown in Fig. 3-16a. -y
3. Resolve components: It is imperative to draw a good figure. The components ()
are drawn in Fig. 3-16b. Instead of drawing all the vectors starting from a N
common origin, as we did in Fig. 3-15b, here we draw them “tail-to-tip” };\Iorth
style, which is just as valid and may make it easier to see.
4. Calculate the components: D, D,.
D,: D,, = +D;cos0° = D; = 620km —x 0 =) 4;.;: Dy ast
Dy, = +D;sin0° = Okm DG
D,: D,, = +D,cos45° = +(440km)(0.707) = +311km Dy, :; g
D,, = —D,sin45° = —(440km)(0.707) = —311km . Dy
D,: Dy, = —D;cos53° = —(550km)(0.602) = —331km -y
D;, = —Dssin53° = —(550 km)(0.799) = —439 km. (b)
We have given a minus sign to each component that in Fig. 3-16b points in  FIGURE 3-16 Example 3-3.
the —x or —y direction. The components are shown in the Table in the margin.
5. Add the components: We add the x components together, and we add the y
components together to obtain the x and y components of the resultant: Vector Components
D, = Dy, + Dy, + Dy, = 620km + 311km — 331km = 600km ¥ (km)  y (km)
D, = Dy + Dy + D, = Okm — 311km — 439km = —750km. 620 g
The x and y components are 600 km and —750 km, and point respectively to 1_).2 oo Tl
the east and south. This is one way to give the answer. — - =432
6. Magnitude and direction: We can also give the answer as Dg 600 =750

Dy =\/D? + D§, = \/(600)* + (—750)5 km = 960 km
D —750 km
y
=—=—_=—1. =—1°_
tan @ D, 600K 25, so 6 5

Thus, the total displacement has magnitude 960km and points 51° below
the x axis (south of east), as was shown in our original sketch, Fig. 3-16a.
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FIGURE 3-17 This strobe photo-

graph of a ball making a series of
bounces shows the characteristic

“parabolic” path of projectile motion.

Horizontal and
vertical motion
analyzed separately

aProjectile Motion

In Chapter 2, we studied the motion of objects in one dimension in terms of
displacement, velocity, and acceleration, including purely vertical motion of
falling bodies undergoing acceleration due to gravity. Now we examine the more
general motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These are all examples of projectile motion (see Fig, 3-17),
which we can describe as taking place in two dimensions. Although air resistance
is often important, in many cases its effect can be ignored, and we will ignore it
in the following analysis. We will not be concerned now with the process by
which the object is thrown or projected. We consider only its motion affer it has
been projected, and before it lands or is caught—that is, we analyze our
projected object only when it is moving freely through the air under the action
of gravity alone. Then the acceleration of the object is that due to gravity, which
acts downward with magnitude g = 9.80 m/s?, and we assume it is constant.’

Galileo was the first to describe projectile motion accurately. He showed
that it could be understood by analyzing the horizontal and vertical components
of the motion separately. For convenience, we assume that the motion begins at
time ¢ = 0 at the origin of an xy coordinate system (50 xo = y, = 0).

v

FIGURE 3-18 Projectile motion of a small ball o
projected horizontally. The dashed black line : Projectile

represents the path of the object. The velocity vector ¥ v \\V
at each point is in the direction of motion and thus

is tangent to the path. The velocity vectors are green
arrows, and velocity components are dashed.

(A vertically falling object starting at the same point
is shown at the left for comparison; v, is the same for
the falling object and the projectile.) Vertical

Vs tangent (o the path

(a,

Vertical motion

constant

~g)

motion

Ll

fall

Let us look at a (tiny) ball rolling off the end of a horizontal table with an
initial velocity in the horizontal (x) direction, v, See Fig. 3-18, where an object
falling vertically is also shown for comparison. The velocity vector ¥ at each
instant points in the direction of the ball’s motion at that instant and is always
tangent to the path. Following Galileo’s ideas, we treat the horizontal and vertical
components of the velocity, v, and v,, separately, and we can apply the kinematic
equations (Egs. 2—11a through 2-11c) to the x and y components of the motion.

First we examine the vertical (y) component of the motion. At the instant
the ball leaves the table’s top (1 = 0), it has only an x component of velocity.
Once the ball leaves the table (at ¢ = 0), it experiences a vertically downward
acceleration g, the acceleration due to gravity. Thus v, is initially zero ('-‘}_\.u =0)
but increases continually in the downward direction (until the ball hits the

ground). Let us take y to be positive upward. Then a, = —g, and from
Eq.2-11a we can write v, = —gt since we set vy = 0. The vertical displace-
ment is given by y = — g%

"This restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).
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FIGURE 3-19 Multiple-exposure photograph
showing positions of two balls at equal time intervals.
One ball was dropped from rest at the same time the
other was projected horizontally outward. The vertical
position of each ball is seen to be the same.

In the horizontal direction, on the other hand, there is no acceleration (we  Horizontal motion
are ignoring air resistance). So the horizontal component of velocity, v,, (a; = 0,0, = constant)
remains constant, equal to its initial value, v,,, and thus has the same magni-
tude at each point on the path. The horizontal displacement is then given by
x = vyt. The two vector components, ¥, and ¥,, can be added vectorially at any
instant to obtain the velocity v at that time (that is, for each point on the path),
as shown in Fig. 3-18.

One result of this analysis, which Galileo himself predicted, is that an object
projected horizontally will reach the ground in the same time as an object
dropped wvertically. This is because the vertical motions are the same in both
cases, as shown in Fig. 3-18. Figure 3-19 is a multiple-exposure photograph of
an experiment that confirms this.

EXERCISE C Two balls having different speeds roll off the edge of a horizontal table
at the same time. Which hits the floor sooner, the faster ball or the slower one?

If an object is projected at an upward angle, as in Fig. 3-20, the analysis is ~ Object projecied upward
similar, except that now there is an initial vertical component of velocity, v,,.
Because of the downward acceleration of gravity, v, gradually decreases with
time until the object reaches the highest point on its path, at which point
v, = 0. Subsequently the object moves downward (Fig. 3-20) and v, increases
in the downward direction, as shown (that is, becoming more negative). As
before, v, remains constant.

y FIGURE 3-20 Path of a projectile

3 at thie noi fired with initial velocity ¥y at
b =08 Emm angle 4 to the horizonta}i. I(:ath is
Vo _;’_,,_"' shown in black, the velocity vectors
vy V - TS - are green arrows, and velocity
P "ir,"" v, ! components are dashed.
Vo K VoAl i
Al
:\"o
o ]
0 Vo i=g
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= PROBLEM SOLVING

Choice of time interval

PROBLEM SOLVING B

m Solving Problems Involving Projectile Motion

We now work through several Examples of projectile motion quantitatively. We
use the kinematic equations (2—11a through 2—11c) separately for the vertical and
horizontal components of the motion. These equations are shown separately for
the x and y components of the motion in Table 3—1, for the general case of two-
dimensional motion at constant acceleration. Note that x and y are the respective
displacements, that v, and v, are the components of the velocity, and that
a, and a, are the components of the acceleration, each of which is constant.
The subscript 0 means “at ¢ = 0.”

TABLE 3-1 General Kinematic Equations for Constant Acceleration
in Two Dimensions

x component (horizontal) y component (vertical)
Vy = Uyy T+ Ayt (Eq.2-11a) vy = vy + ayt

= xo + vyt + Ja,? (Eq.2-11b) y =y + vyt + 3a,t?
vE = vy + 2a,(x — xo) (Eq.2-11c) v} = 3o + 2a,(y = y)

We can simpiify these equations for the case of projectile motion because we

can set a, = 0. See Table 3-2, which assumes y is positive upward, so a, = —g
= —9.80 m/s% Note that if § is chosen relative to the +x axis, as in Fig. 3-20, then
Vo = ¥y COS 0, and Vyy = Vpsin 6.

In doing Problems involving projectile motion, we must consider a time interval for
which our chosen object is in the air, influenced only by gravity. We do not consider
the throwing (or projecting) process, nor the time after the object lands or is caught,
because then other influences act on the object, and we can no longer set & = g.

TABLE 3-2 Kinematic Equations for Projectile Motion
{y positive upward; a. = 0,4, = —g = —9.80 m/s?)

Horizontal Motion Vertical Motion'

(ay = 0, v, = constant) (ay = —g = constant)

Uy = Uy (Eq.2-11a) vy = vy — gt

X = xg + Uyt (Eq.2-11b) Y=y + vyt — 1gt?
(Eq.2-11c) v}, = vj — 28(y = y)

*If y is taken positive downward, the minus (—) signs in front of g become + signs.

Our approach to solving problems in Section 2-6 also 5. Examine the horizontal (x) and vertical (y) motions

applies here. Solving problems involving projectile separately. If you are given the initial velocity, you
motion can require creativity, and cannot be done just may want to resolve it into its x and y components.
by following some rules. Certainly you must avoid just ~ 6. List the known and unknown quantities, choosing
| plugging numbers into equations that seem to “work.” a, =0 and a, = —g or +g, where g = 9.80 m/s?,

1. As always, read carefully; choose the object (or
objects) you are going to analyze.

2. Draw a careful diagram showing what is happening

to the object.

3. Choose an origin and an xy coordinate system. landing is generally not zero.
4. Decide on the time interval, which for projectile 7. Think for a minute before jumping into the equations.

and using the + or — sign, depending on whether
you choose y positive down or up. Remember that
v, never changes throughout the trajectory, and
that v, = 0 at the highest point of any trajectory
that returns downward. The velocity just before

motion can only include motion under the effect of
gravity alone, not throwing or landing. The time
interval must be the same for the x and y analyses. The
x and y motions are connected by the common time.

A little planning goes a long way. Apply the relevant
equations (Table 3-2), combining equations if
necessary. You may need to combine components of
a vector to get magnitude and direction (Egs. 3-4).
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Driving off a cliff. A movie stunt driver on a motorcycle
speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave
the cliff top to land on level ground below, 90.0m from the base of the cliff
where the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Box.
SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the motor-
cycle and driver, taken as a single unit. The diagram is shown in Fig. 3-21.

3. Choose a coordinate system. We choose the y direction to be positive
upward, with the top of the cliff as y, = 0. The x direction is horizontal
with x, = 0 at the point where the motorcycle leaves the cliff.

4. Choose a time interval. We choose our time interval to begin (¢ = 0) just as
the motorcycle leaves the cliff top at position x, = 0, y, = 0; our time
interval ends just before the motorcycle hits the ground below.

5. Examine x and y motions. In the horizontal (x) direction, the acceleration
a, = 0, so the velocity is constant. The value of x when the motorcycle
reaches the ground is x = +90.0m. In the vertical direction, the accelera-
tion is the acceleration due to gravity, a, = —g = —9.80 m/s%. The value
of y when the motorcycle reaches the ground is y = —50.0 m. The initial
velocity is horizontal and is our unknown, v,,; the initial vertical velocity is
zero, vy, = 0.

6. List knowns and unknowns. See the Table in the margin. Note that in addition
to not knowing the initial horizontal velocity v,, (which stays constant until
landing), we also do not know the time ¢ when the motorcycle reaches the
ground.

7. Apply relevant equations. The motorcycle maintains constant v, as long as
it is in the air. The time it stays in the air is determined by the y motion—
when it hits the ground. So we first find the time using the y motion, and
then use this time value in the x equations. To find out how long it takes the
motorcycle to reach the ground below, we use Eq. 2-11b (Table 3-2) for
the vertical (y) direction with y, = 0 and v, = O:

Y=+ vyt +3a,f
=0+ 0 +3(—g)
or
y = —38t’
We solve for t and set y = —50.0 m:

2 2(—50.0m
==, y_ Es0m
—9.80 m/s?
To calculate the initial velocity, v,,, we again use Eq. 2-11b, but this time
for the horizontal (x) direction, with a, = 0 and x, = O:

X = Xo + Uyt + 54,8
0+t + O

I

or
x:/Uxot.
Then
x  900m
= — = = _2
o =TT 39, - 282M/5,

which is about 100 km/h (roughly 60 mi/h).

NOTE In the time interval of the projectile motion, the only acceleration is g
in the negative y direction. The acceleration in the x direction is zero.

t+y
" — X ..
T a=g
| ~
~
~N
~
JSU.IJm \\
] \
= N
! y=-500m
[~ 90.0m — o

FIGURE 3-21 Example 3-4.

Known Unknown
xg=y =0 Uxo
x = 90.0m t
y = —50.0m
a, =0
ay = —g = —9.80m/s’
Uyo .
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¥, = 0 at this point
g ;

\
— — — e———
= -

FIGURE 3-22 Example 3-5,

0 a=g

(A)PHYSICS APPLIED A kicked football. A football is kicked at an angle

Sports | 8 = 37.0° with a velocity of 20.0 m/s, as shown in Fig. 3-22. Calculate (a) the
maximum height, (b) the time of travel before the football hits the ground,
(c) how far away it hits the ground, (d) the velocity vector at the maximum
height, and (e) the acceleration vector at maximum height. Assume the ball
leaves the foot at ground level, and ignore air resistance and rotation of the ball.

APPROACH This may seem difficult at first because there are so many ques-
tions. But we can deal with them one at a time. We take the y direction as posi-
tive upward, and treat the x and y motions separately. The total time in the air is
again determined by the y motion. The x motion occurs at constant velocity. The
y component of velocity varies, being positive (upward) initially, decreasing to
zero at the highest point, and then becoming negative as the football falls.
SOLUTION We resolve the initial velocity into its components (Fig. 3-22):

Vy = Ypc0s37.0° = (20.0m/s)(0.799) = 16.0m/s

vy = 1,8in 37.0° = (20.0m/s)(0.602) = 12.0m/s.
(a) We consider a time interval that begins just after the football loses contact
with the foot until it reaches its maximum height. During this time interval, the
acceleration is g downward. At the maximum height, the velocity is horizontal
(Fig. 3-22), s0 w, = 0; and this occurs at a time given by v, = vy — gt with
vy, = 0 (see Eq.2-11a in Table 3-2). Thus

v 12.0m/s
=20 W20mA) o
g (980m/s?)

From Eq. 2-11b, with y, = 0, we have

y = vyt =381

= (12.0m/s)(1.22s) — 3(9.80 m/s?)(1.225)> = 7.35 m.

Alternatively, we could have used Eq. 2-11c, solved for y, and found

vy — v, (120m/s)?> — (0m/s)?
=2 ' =1735m.
2g 2(9.80 m/s?)

The maximum height is 7.35 m.

(b) To find the time it takes for the ball to return to the ground, we consider a
different time interval, starting at the moment the ball leaves the foot
(t =0,y = 0) and ending just before the ball touches the ground (y =0
again). We can use Eq. 2-11b with y, = 0 and also set y = 0 (ground level):

Y=yt vt — 381
0=0+ (120m/s)t — (9.80 m/s?)%.
This equation can be easily factored:
[3(9.80m/s?)t — 12.0m/s]t = 0.
There are two solutions, t+ = 0 (which corresponds to the initial point, y;), and

2(12.0m/s)
t=——-==245s,
(9.80 m/s?)

which is the total travel time of the football.
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NOTE The time ¢ = 2.45s for the whole trip is double the time to reach
the highest point, calculated in (a). That is, the time to go up equals the time to
come back down to the same level, but only in the absence of air resistance.

(¢) The total distance traveled in the x direction is found by applying
Eq 2—11b with Xo = 0, ay = 0, Vyo = 16.0 m/S:

X = vt = (16.0m/s)(2.45s) = 39.2m.

(d) At the highest point, there is no vertical component to the velocity. There
is only the horizontal component (which remains constant throughout the
flight), so v = vy, = vycos 37.0° = 16.0 m/s.

(e) The acceleration vector is the same at the highest point as it is throughout
the flight, which is 9.80 m/s* downward.

NOTE We treated the football as if it were a particle, ignoring its rotation. We
also ignored air resistance, which is considerable on a rotating football, so our

results are not very accurate.

EXERCISE D Two balls are thrown in the air at different angles, but each reaches the
same height. Which ball remains in the air longer: the one thrown at the steeper angle
or the one thrown at a shallower angle?

CONCEPTUAL EXAMPLE 3-6 | Where does the apple land? A child sits

upright in a wagon which is moving to the right at constant speed as shown in
Fig. 3-23. The child extends her hand and throws an apple straight upward
(from her own point of view, Fig. 3-23a), while the wagon continues to travel
forward at constant speed. If air resistance is neglected, will the apple land
(a) behind the wagon, (b) in the wagon, or (c) in front of the wagon?

RESPONSE The child throws the apple straight up from her own reference
frame with initial velocity v, (Fig. 3-23a). But when viewed by someone on
the ground, the apple also has an initial horizontal component of velocity
equal to the speed of the wagon, V,y. Thus, to a person on the ground, the
apple will follow the path of a projectile as shown in Fig. 3-23b. The apple
experiences no horizontal acceleration, so v,, will stay constant and equal to
the speed of the wagon. As the apple follows its arc, the wagon will be directly
under the apple at all times because they have the same horizontal velocity.
When the apple comes down, it will drop right into the outstretched hand of
the child. The answer is (b).

CONCEPTUAL EXAMPLE 3-7 | The wrong strategy. A boy on a small

hill aims his water-balloon slingshot horizontally, straight at a second boy
hanging from a tree branch a distance d away, Fig. 3-24. At the instant the
water balloon is released, the second boy lets go and falls from the tree, hoping
to avoid being hit. Show that he made the wrong move. (He hadn’t studied
physics yet.) Ignore air resistance.

RESPONSE Both the water balloon and the boy in the tree start falling at the
same instant, and in a time ¢ they each fall the same vertical distance y = 1gt?,
much like Fig. 3—-19. In the time it takes the water balloon to travel the hori-
zontal distance d, the balloon will have the same y position as the falling boy.
Splat. If the boy had stayed in the tree, he would have avoided the humiliation.

Lirne wp = time dowen

VyO y

el L.,
5%

(a) Wagon reference frame

vyo 7 \
v, \
* /, i 0 m\
— o £
- -
00 &%

(b) Ground reference frame

FIGURE 3-23 Example 3-6.

FIGURE 3-24 Example 3-7.
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y =0 again here
xp=0 (where x = R)
Yo=0 o /
\ \\ |
90 % .'ll
S
R »
(a)
60°
——

7 b
I(l——.-h---«h..
A G W
ot NN

(b)

FIGURE 3-25 Example 3-8.

(a) The range R of a projectile;

(b) there are generally two angles 6,
that will give the same range. Can
you show that if one angle is 8y,
the other is 6p = 90° — 6¢ ?

Lewvel range formula
[y (final) = yl,]

EXERCISE E A package is dropped from a plane flying at constant velocity parallel to
the ground. If air resistance is ignored, the package will (a) fall behind the plane,
(b) remain directly below the plane until hitting the ground, (¢) move ahead of the
plane, or (d) it depends on the speed of the plane.

Level horizontal range. (a) Derive a formula for the hori-
zontal range R of a projectile in terms of its initial velocity v, and angle 6. The
horizontal range is defined as the horizontal distance the projectile travels
before returning to its original height (which is typically the ground); that is,
y (final) = y,. See Fig. 3-25a. (b) Suppose one of Napoleon’s cannons had a
muzzle velocity, vy, of 60.0m/s. At what angle should it have been aimed
(ignore air resistance) to strike a target 320 m away?

APPROACH The situation is the same as in Example 3-5, except we are not
now given numbers in (a). We will algebraically manipulate equations to
obtain our result.

SOLUTION (a) We set x, =0 and y, =0 at ¢ = 0. After the projectile
travels a horizontal distance R, it returns to the same level, y = 0, the final
point. We choose our time interval to start (¢ = 0) just after the projectile is
fired and to end when it returns to the same vertical height. To find a general
expression for R, we set both y = 0 and y, = 0 in Eq. 2-11b for the vertical
motion, and obtain

— 1 2
y=1y + Vyo! + 20yl
o)
0 =0+ vyt — 58°

We solve for 1, which gives two solutions: ¢t = 0 and ¢ = 2v,,/g. The first
solution corresponds to the initial instant of projection and the second is the
time when the projectile returns to y = 0. Then the range, R, will be equal to x
at the moment ¢ has this value, which we put into Eq. 2-11b for the horizontal
motion (x = wvyt, with x; = 0). Thus we have:

20y 2000y 20v%sin 6, cos 6,

R=x=vx0t=vx0<g > B

where we have written v,y = vycos 6, and v,y = vysin6,. This is the result
we sought. It can be rewritten, using the trigonometric identity 2sinf cos§ =
sin26 (Appendix A or inside the rear cover):
i sin 26,

s

= [y = %]
We see that the maximum range, for a given initial velocity v, is obtained
when sin 26 takes on its maximum value of 1.0, which occurs for 26, = 90°; so

6, = 45° for maximum range, and R, = v3/g.

[When air resistance is important, the range is less for a given v, and the
maximum range is obtained at an angle smaller than 45°.]

NOTE The maximum range increases by the square of v,, so doubling the
muzzle velocity of a cannon increases its maximum range by a factor of 4.

(b) We put R =320m into the equation we just derived, and (assuming,
unrealistically, no air resistance) we solve it to find

Rg  (320m)(9.80 m/s?)

in 26, = = 0.871.
= v3 (60.0m/s)?

We want to solve for an angle 6, that is between 0° and 90°, which means 26,
in this equation can be as large as 180°. Thus, 26, = 60.6° is a solution, but
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20, = 180° — 60.6° = 119.4° is also a solution (see Appendix A-7). In
general we will have two solutions (see Fig. 3-25b), which in the present case
are given by

6, = 30.3° or 59.7°.

Either angle gives the same range. Only when sin26, =1 (so 6, = 45°) is
there a single solution (that is, both solutions are the same).

Additional Example: slightly more Complicated, but Fun

SENWIZNSRECE A punt. Suppose the football in Example 3-5 was a punt @ PHYSICS APPLIED
and left the punter’s foot at a height of 1.00 m above the ground. How far did Sports
the football travel before hitting the ground? Set x, = 0, y, = 0.

APPROACH The x and y motions are again treated separately. But we > PROBLEM SOLVING

cannot use the range formula from Example 3-8 because it is valid only if Do ot use any formula unless you
y (final) = y,, which is not the case here. Now we have y, = 0, and the foot- ~are sure its range of validity fits the
ball hits the ground where y = —1.00m (see Fig. 3-26). We choose our time " [l)/e;”)' T/l“ rangG [t
interval to start when the ball leaves his foot (f = 0, y, = 0, xo = 0) and end qpPY Here pecause y %

just before the ball hits the ground (y = —1.00m). We can get x from

Eq. 2-11b, x = v,t, since we know that v,, = 16.0m/s from Example 3-5.

But first we must find ¢, the time at which the ball hits the ground, which we

obtain from the y motion.

SOLUTION With y = —=1.00m and vy, = 12.0m/s (see Example 3-5), we
use the equation

_ 1
Yy = Yo+ vyt — 380,

and obtain
~1.00m = 0 + (12.0m/s)t — (4.90 m/s?)¢>.

We rearrange this equation into standard form so we can use the quadratic
formula (Appendix A—4; also Example 2-15):

(490 m/s?)* — (12.0m/s)t — (1.00m) = 0.
Using the quadratic formula gives
12.0m/s + \/(12.0m/s)? — 4(4.90 m/s?)(—1.00 m)

2(4.90 m/s?)
=253s or —0.081s.

The second solution would correspond to a time prior to the kick, so it doesn’t
apply. With ¢ = 2.53s for the time at which the ball touches the ground, the
horizontal distance the ball traveled is (using v,, = 16.0 m/s from Example 3-5):

X = Uyt = (16.0m/s)(2.53s) = 40.5m.

Our assumption in Example 3-5 that the ball leaves the foot at ground level
results in an underestimate of about 1.3 m in the distance traveled.

y
P e
- Y FIGURE 3-26 Example 3-9: the

g P 0 Sas football leaves the punter’s foot at
?’ﬁfﬂ:‘ =24 \\\ X y = 0, and reaches the ground
il B N where y = —1.00m.
/,if y =-1.00m e

Ground
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FIGURE 3-27 Examples of projec-
tile motion—sparks (small hot
glowing pieces of metal), water, and
fireworks. All exhibit the parabolic
path characteristic of projectile
motion, although the effects of air
resistance can be seen to alter the
path of some trajectories.

“ PROBLEM SOLVING
Subscripts for adding velocities:
Jirst subscript for the object;

frame

m Projectile Motion Is Parabolic

We now show that the path followed by any projectile is a parabola, if we ignore
air resistance and assume that g is constant. To show this, we need to find y as a
function of x by eliminating ¢ between the two equations for horizontal and
vertical motion (Eq. 2-11b), and we set x, = y, = 0:

X = Dyt
— 1 .2
y'—"vyot—fgt.

From the first equation, we have ¢ = x/v,,, and we substitute this into the
second one to obtain

(o) G
y=\|\—|x — —ZX.
Vxo 2’va

vpcos 6y and vy, = vysin 6y, we can also write

g 2
tanBy)x — | ———— |x~.
(tan 6)x (21)%005290>x

If we write v, =

y

In either case, we see that y as a function of x has the form
y = Ax — Bx?,

where A and B are constants for any specific projectile motion. This is the well-
known equation for a parabola. See Figs. 3-17 and 3-27.

The idea that projectile motion is parabolic was, in Galileo’s day, at the
forefront of physics research. Today we discuss it in Chapter 3 of introductory
physics!

m Relative Velocity

We now consider how observations made in different reference frames are
related to each other. For example, consider two trains approaching one
another, each with a constant speed of 80km/h with respect to the Earth.
Observers on the Earth beside the tracks will measure 80 km/h for the speed of
each train. Observers on either of the trains (a different reference frame) will
measure a speed of 160 km/h for the other train approaching them.

Similarly, when one car traveling 90 km/h passes a second car traveling in
the same direction at 75km/h, the first car has a speed relative to the second
car of 90km/h — 75km/h = 15km/h.

When the velocities are along the same line, simple addition or subtrac-
tion is sufficient to obtain the relative velocity. But if they are not along the
same line, we must use vector addition. We emphasize, as mentioned in
Section 2-1, that when specifying a velocity, it is important to specify what the
reference frame is.

When determining relative velocity, it is easy to make a mistake by adding
or subtracting the wrong velocities. It is important, therefore, to draw a
diagram and use a careful labeling process. Each velocity is labeled by two
subscripts: the first refers to the object, the second to the reference frame in
which it has this velocity. For example, suppose a boat is to cross a river to the
opposite side, as shown in Fig. 3-28. We let ¥y, be the velocity of the Boat
with respect to the Water. (This is also what the boat’s velocity would be rela-
tive to the shore if the water were still.) Similarly, Vg is the velocity of the
Boat with respect to the Shore, and Vyg is the velocity of the Water with
respect to the Shore (this is the river current). Note that vy, is what the boat’s
motor produces (against the water), whereas vgg is equal to gy plus the effect
of the current, vys. Therefore, the velocity of the boat relative to the shore is
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(see vector diagram, Fig. 3-28)
Vs = Vew t Vws. (3-6)

By writing the subscripts using this convention, we see that the inner
subscripts (the two W’s) on the right-hand side of Eq. 3-6 are the same,
whereas the outer subscripts on the right of Eq. 3-6 (the B and the S) are the
same as the two subscripts for the sum vector on the left, v_gg. By following this
convention (first subscript for the object, second for the reference frame), one
can write down the correct equation relating velocities in different reference
frames.” Equation 36 is valid in general and can be extended to three or more
velocities. For example, if a fisherman on the boat walks with a velocity Vg rela-
tive to the boat, his velocity relative to the shore is Vgg = Vgg + Vpw + Vs
The equations involving relative velocity will be correct when adjacent inner
subscripts are identical and when the outermost ones correspond exactly to the
two on the velocity on the left of the equation. But this works only with plus
signs (on the right), not minus signs.

It is often useful to remember that for any two objects or reference frames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

Voa = ~Vap- 3-7
For example, if a train is traveling 100 km/h relative to the Earth in a certain

direction, objects on the Earth (such as trees) appear to an observer on the
train to be traveling 100 km/h in the opposite direction.

CONCEPTUAL EXAMPLE 3-10 | Crossing a river. A man in a small
motor boat is trying to cross a river that flows due west with a strong current.
The man starts on the south bank and is trying to reach the north bank
directly north from his starting point. Should he (a) head due north, (b) head
due west, (¢) head in a northwesterly direction, (d) head in a northeasterly
direction?

RESPONSE If the man heads straight across the river, the current will drag
the boat downstream (westward). To overcome the river’s westward current,
the boat must acquire an eastward component of velocity as well as a north-
ward component. Thus the boat must (d) head in a northeasterly direction (see
Fig. 3-28). The actual angle depends on the strength of the current and how
fast the boat moves relative to the water. If the current is weak and the motor
is strong, then the boat can head almost, but not quite, due north.

Heading upstream. A boat’s speed in still water is
vgw = 1.85m/s. If the boat is to travel directly across a river whose current
has speed wyg = 1.20m/s, at what upstream angle must the boat head? (See
Fig. 3-29.)

APPROACH We recason as in Example 3-10, and use subscripts as in Eq. 3-6.
Figure 3-29 has been drawn with ¥gg, the velocity of the Boat relative to the
Shore, pointing directly across the river since this is how the boat is supposed
to move. (Note that Vg3 = Vgw + Vys.) To accomplish this, the boat needs to
head upstream to offset the current pulling it downstream.

SOLUTION Vector vgy points upstream at an angle 6 as shown. From the
diagram,

vws _ 1.20m/s
vgw  1.85m/s

Thus 6 = 40.4°, so the boat must head upstream at a 40.4° angle.

sinf = = 0.6486.

"We thus would know by inspection that (for example) the equation Vgw = Vpg + Vg is wrong:
the inner subscripts are not the same, and the outer ones on the right are not the same as the
subscripts on the left.

FIGURE 3-28 To move directly

across the river, the boat must head

upstream at an angle 6. Velocity

vectors are shown as green arrows:

vgs = velocity of Boat with respect
to the Shore,

Vgw = velocity of Boat with respect
to the Water,

Vws = velocity of Water with
respect to the Shore (river
current).

FIGURE 3-29 Example 3-11,

River current
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FIGURE 3-30 Example 3-12. A
boat heading directly across a river
whose current moves at 1.20 m/s.

B Summary

Heading across the river. The same boat (vBW =
1.85m/s) now heads directly across the river whose current is still 1.20m/s.
(a) What is the velocity (magnitude and direction) of the boat relative to the
shore? (b) If the river is 110 m wide, how long will it take to cross and how far
downstream will the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3-30. The boat’s velocity with respect to
the shore, ¥z, is the sum of its velocity with respect to the water, vy, plus the
velocity of the water with respect to the shore, Vys:

VBs = Vew T Vws,
just as before.

SOLUTION (a) Since Vgy is perpendicular to vy, we can get vgg using the
theorem of Pythagoras:

vas = \/Vhw + Vs = V(1.85m/s)2 + (120 m/s)> = 2.21 m/s.

We can obtain the angle (note how 6 is defined in the diagram) from:
tan 6 = vys/vgw = (1.20m/s)/(1.85 m/s) = 0.6486.

A calculator with an INV TAN, an ARC TAN, or a TAN | key gives 6 =
tan™1(0.6486) = 33.0°. Note that this angle is not equal to the angle calculated
in Example 3-11.

(b) The travel time for the boat is determined by the time it takes to cross the
river. Given the river’s width D = 110m, we can use the velocity component
in the direction of D, vgw = D/t. Solving for , we get + = 110m/1.85m/s =
60s. The boat will have been carried downstream, in this time, a distance

d = vyst = (1.20m/s)(60s) = 72 m.

NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).

A quantity such as velocity, that has both a magnitude and a
direction, is called a vector. A quantity such as mass, that has
only a magnitude, is called a scalar.

Addition of vectors can be done graphically by placing
the tail of each successive arrow at the tip of the previous one.
The sum, or resultant vector, is the arrow drawn from the tail
of the first vector to the tip of the last vector. Two vectors can
also be added using the parallelogram method.

Vectors can be added more accurately by adding their
components along chosen axes with the aid of trigonometric
functions. A vector of magnitude V making an angle § with
the x axis has components

Ve = Vcosé, Vy = Vsin6. (3-3)

Given the components, we can find a vector’s magnitude and
direction from

1%
V=\/Vi+V2, tan0=7y- (3-4)
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Projectile motion is the motion of an object in an arc
near the Earth’s surface under the effect of gravity alone. It
can be analyzed as two separate motions if air resistance can
be ignored. The horizontal component of motion is at
constant velocity, whereas the vertical component is at
constant acceleration, g, just as for a body falling vertically
under the action of gravity.

[*The velocity of an object relative to one frame of refer-
ence can be found by vector addition if its velocity relative to
a second frame of reference, and the relative velocity of the
two reference frames, are known.]



Questions

1.

>

10.

11.

12,

One car travels due east at 40km/h, and a second car
travels north at 40km/h. Are their velocities equal?
Explain.

. Can you give several examples of an object’s motion in

which a great distance is traveled but the displacement is
zero?

Can the displacement vector for a particle moving in two
dimensions ever be longer than the length of path trav-
eled by the particle over the same time interval? Can it
ever be less? Discuss.

During baseball practice, a batter hits a very high fly ball
and then runs in a straight line and catches it. Which had
the greater displacement, the batter or the ball?

LIEV = Vl + VZ, is V necessarily greater than V; and/or

V,? Discuss.

. Two vectors have length V; = 35km and V, = 4.0km.

What are the maximum and minimum magnitudes of their
vector sum?

Can two vectors of unequal magnitude add up to give the
zero vector? Can three unequal vectors? Under what
conditions?

Can the magnitude of a vector ever (a) be equal to one of
its components, or (b) be less than one of its components?
Can a particle with constant speed be accelerating? What
if it has constant velocity?

A child wishes to determine the speed a slingshot imparts
to a rock. How can this be done using only a meter stick,
a rock, and the slingshot?

It was reported in World War I that a pilot flying at an
altitude of 2 km caught in his bare hands a bullet fired at
the plane! Using the fact that a bullet slows down consid-
erably due to air resistance, explain how this incident
occurred.

At some amusement parks, to get on a moving “car” the
riders first hop onto a moving walkway and then onto the
cars themselves. Why is this done?

Problems

13.

14

15.

16.

17.

18

19.

20.

If you are riding on a train that speeds past another train
moving in the same direction on an adjacent track, it
appears that the other train is moving backward. Why?

If you stand motionless under an umbrella in a rainstorm
where the drops fall vertically, you remain relatively dry.
However, if you start running, the rain begins to hit your
legs even if they remain under the umbrella. Why?

A person sitting in an enclosed train car, moving at
constant velocity, throws a ball straight up into the air in
her reference frame. (¢) Where does the ball land? What
is your answer if the car (b) accelerates, (c) decelerates,
(d) rounds a curve, (¢) moves with constant velocity but is
open to the air?

Two rowers, who can row at the same speed in still water,
set off across a river at the same time. One heads straight
across and is pulled downstream somewhat by the
current. The other one heads upstream at an angle so as
to arrive at a point opposite the starting point. Which
rower reaches the opposite side first?

How do you think a baseball player “judges” the flight of
a fly ball? Which equation in this Chapter becomes part
of the player’s intuition?

In archery, should the arrow be aimed directly at the
target? How should your angle of aim depend on the
distance to the target?

A projectile is launched at an angle of 30° to the hori-
zontal with a speed of 30 m/s. How does the horizontal
component of its velocity 1.0s after launch compare with
its horizontal component of velocity 2.0s after launch?

Two cannonballs, A and B, are fired from the ground with
identical initial speeds, but with 64 larger than 6p.
(a) Which cannonball reaches a higher elevation? () Which
stays longer in the air? (¢) Which travels farther?

3-2 to 3-4 Vector Addition

@

(I) A car is driven 215 km west and then 85 km southwest.
What is the displacement of the car from the point of
origin (magnitude and direction)? Draw a diagram.

2.)(I) A delivery truck travels 18 blocks north, 10 blocks

3.

4.

5.

east, and 16 blocks south. What is its final displacement
from the origin? Assume the blocks are equal length.

(I) Show that the vector labeled “incorrect” in Fig. 3—6c¢ is
actually the difference of the two vectors. Is it VZ -V,
or Vl - Vz

(I It V, = 6.80 units and V;, = —7.40 units, determine
the magnitude and direction of V.

(II) Graphically determine the resultant of the following
three vector displacements: (1) 34m, 25° north of east;
(2) 48 m, 33° east of north; and (3) 22 m, 56° west of south.

i

. (I) The components of a vector V can be written

(Vs Vy, V,). What are the components and length of a vector
which is the sum of the two vectors, V; and V,, whose
components are (8.0, —3.7,0.0) and (3.9, —8.1, —4.4)?

. (II) V is a vector 14.3 units in magnitude and points at an

angle of 34.8° above the negative x axis. (a) Sketch this
vector. (b) Find V, and V,. (¢) Use V, and V), to obtain
(again) the magnitude and direction of V. [Note: Part (¢)
is a good way to check if you’ve resolved your vector
correctly.]

(II) Vector V; is 6.6 units long and points along the nega-
tive x axis. Vector V, is 8.5 units long and points at +45°
to the positive x axis. (a) What are the x and y compo-
nents of each vector? (b) Determine the sum V; + V,
(magnitude and angle).

Problems 65




@ IT) An airplane is traveling 735 km/h in a direction 41.5°
west of north (Fig. 3-31). (@) Find the components of the
velocity vector in the northerly and westerly directions.
(b) How far north and how far west has the planc trav-
eled after 3.00 h?

vy 415°]
(735 km/h) N |

w E

FIGURE 3-31
Problem 9.

S

(Ha (II) Three vectors are shown in Fig. 3-32. Their
magnitudes are given in arbitrary units. Determine the
sum of the three vectors. Give the resultant in terms of
(a) components, (b) magnitude and angle with the x axis.

y
Mf:///
"P,KP’//
) 28.0°
C (C=31.0)

FIGURE 3-32 Problems 10,11, 12, 13, and 14.
Vector magnitudes are given in arbitrary units.

11. (II) Determine the vector A — C, given the vectors A and
C in Fig. 3-32.

12. (IT) (a) Given the vectors A and B shown in Fig. 3-32,
determine B — A. (b) Determine A — B without using
your answer in (a). Then compare your results and see if
they are opposite.

13. (Il) For the vectors given in Fig. 3-32, determme
(@)A-B+C BMA+B-Cand(c)C - A -

14. (IT) For the vectors shown in Fig. 3-32, determlne
(@) B — 2A, (b) 2A — 3B + 2C.

15. (II) The summit of a mountain, 2450 m above base camp,
is measured on a map to be 4580 m horizontally from the
camp in a direction 32.4° west of north. What are the
components of the displacement vector from camp to
summit? What is its magnitude? Choose the x axis east, y
axis north, and z axis up.
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16. (II) You are given a vector in the xy plane that has a
magnitude of 70.0 units and a y component of —55.0 units.
What are the two possibilities for its x component?

3-5 and 3-6 Projectile Motion {neglect air resistance)

I*;j"(!) A tiger leaps horizontally from a 6.5-m-high rock with
a speed of 3.5 m/s. How far from the base of the rock will

. she land?

18) (I) A diver running 1.8 m/s dives out horizontally from
the edge of a vertical cliff and 3.0s later reaches the water
below. How high was the cliff, and how far from its base
did the diver hit the water?

19. (IT) A fire hose held near the ground shoots water at a
speed of 6.8 m/s. At what angle(s) should the nozzle point
in order that the water land 2.0 m away (Fig. 3-33)? Why
are there two different angles? Sketch the two trajectories,

[y 20m >~

FIGURE 3-33 Problem 19.

20! (I) Romeo is chucking pebbles gently up to Juliet’s
“ window, and he wants the pebbles to hit the window with
only a horizontal component of velocity. He is standing at
the edge of a rose garden 4.5m below her window and
5.0m from the base of the wall (Fig. 3-34). How fast are
the pebbles going when they hit her window?

IR
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FIGURE 3-34
| 5.0m - Problem 20.

1) A ball is thrown horizontally from the roof of a
building 45.0 m tall and lands 24.0 m from the base. What

\ was the ball’s initial speed?

/ (IT) A football is kicked at ground level with a speed of
18.0 m/s at an angle of 35.0° to the horizontal. How much
later does it hit the ground?

23. (IT) A ball thrown horizontally at 22.2 m/s from the roof
of a building lands 36.0 m from the base of the building.
How tall is the building?

ors



24. (II) An athlete executing a long jump leaves the ground
at a 28.0° angle and travels 7.80 m. (¢) What was the
takeoff speed? (b) If this speed were increased by just
5.0%, how much longer would the jump be?

I~
n

. (IT) Determine how much farther a person can jump on
the Moon as compared to the Earth if the takeoff speed
and angle are the same. The acceleration due to gravity
on the Moon is one-sixth what it is on Earth.

26. (II) A hunter aims directly at a target (on the same level)
75.0 m away. (a) If the bullet leaves the gun at a speed of
180 m/s, by how much will it miss the target? (b) At what
angle should the gun be aimed so as to hit the target?

27. YII) The pilot of an airplane traveling 180 km/h wants to

__Alrop supplies to flood victims isolated on a patch of land
160 m below. The supplies should be dropped how many
seconds before the plane is directly overhead?

28. (II) Show that the speed with which a projectile leaves
the ground is equal to its speed just before it strikes the
ground at the end of its journey, assuming the firing level
equals the landing level.

29. (II) Suppose the kick in Example 3-5 is attempted 36.0 m
from the goalposts, whose crossbar is 3.00m above the
ground. If the football is directed correctly between the
goalposts, will it pass over the bar and be a field goal?
Show why or why not.

30. (II) A projectile is fired with an initial speed of 65.2m/s
at an angle of 34.5° above the horizontal on a long flat
firing range. Determine (@) the maximum height reached
by the projectile, (b) the total time in the air, (¢) the total
horizontal distance covered (that is, the range), and
(d) the velocity of the projectile 1.50 s after firing,

(-}'l. (IT) A projectile is shot from the edge of a cliff 125m
\\, / above ground level with an initial speed of 65.0m/s at an
angle of 37.0° with the horizontal, as shown in Fig. 3-35.
(a) Determine the time taken by the projectile to hit point
P at ground level. (b) Determine the range X of the projec-
tile as measured from the base of the cliff. At the instant
just before the projectile hits point P, find (c) the horizontal
and the vertical components of its velocity, (d) the magni-
tude of the velocity, and (e) the angle made by the velocity
vector with the horizontal. (f) Find the maximum height
above the cliff top reached by the projectile.

1)0 = 65.0 m/s

FIGURE 3-35 Problem 31.

32. (IT) A shotputter throws the shot with an initial speed of
15.5m/s at a 34.0° angle to the horizontal. Calculate the
horizontal distance traveled by the shot if it leaves the
athlete’s hand at a height of 2.20 m above the ground.

33. (IT) At what projection angle will the range of a projectile
equal its maximum height?

34. (III) Revisit Conceptual Example 3-7, and assume that the
boy with the slingshot is below the boy in the tree
(Fig. 3-36), and so aims upward, directly at the boy in the
tree. Show that again the boy in the tree makes the wrong
move by letting go at the moment the water balloon is shot.

—_——

FIGURE 3-36 Problem 34.

[
n

. (ITIT) A rescue plane wants to drop supplies to isolated
mountain climbers on a rocky ridge 235 m below. If the
plane is traveling horizontally with a speed of 250 km/h
(69.4m/s), (a) how far in advance of the recipients (hori-
zontal distance) must the goods be dropped (Fig. 3-37a)?
(b) Suppose, instead, that the plane releases the supplies a
horizontal distance of 425 m in advance of the mountain
climbers. What vertical velocity (up or down) should the
supplies be given so that they arrive precisely at the
climbers’ position (Fig. 3-37b)? (¢) With what speed do
the supplies land in the latter case?
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FIGURE 3-37 Problem 35.
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* 3-8 Relative Velocity

*36.

*37.

*40.

*41.

* 42

68

(I) A person going for a morning jog on the deck of a
cruise ship is running toward the bow (front) of the ship
at 2.2 m/s while the ship is moving ahead at 7.5 m/s. What
is the velocity of the jogger relative to the water? Later,
the jogger is moving toward the stern (rear) of the ship.
What is the jogger’s velocity relative to the water now?

(IT) Huck Finn walks at a speed of 0.60 m/s across his raft
(that is, he walks perpendicular to the raft’s motion rela-
tive to the shore). The raft is traveling down the Missis-
sippi River at a speed of 1.70m/s relative to the river
bank (Fig. 3-38). What is Huck’s velocity (speed and
direction) relative to the river bank?

!

ey tla AL
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FIGURE 3-38 Problem 37,

(I) You are driving south on a highway at 25m/s
(approximately 55 mi/h) in a snowstorm. When you last
stopped, you noticed that the snow was coming down
vertically, but it is passing the windows of the moving car
at an angle of 30° to the horizontal. Estimate the speed of
the snowflakes relative to the car and relative to the
ground.

. (II) A boat can travel 2.30m/s in still water. (a) If the

boat points its prow directly across a stream whose
current is 1.20 m/s, what is the velocity (magnitude and
direction) of the boat relative to the shore? (b) What will
be the position of the boat, relative to its point of origin,
after 3.00s? (See Fig. 3-30.)

(IT) Two planes approach each other head-on. Each has a
speed of 785km/h, and they spot each other when they
are initially 11.0km apart. How much time do the pilots
have to take evasive action?

(II) An airplane is heading due south at a speed of
600 km/h. If a wind begins blowing from the southwest at
a speed of 100 km/h (average), calculate: (a) the velocity
(magnitude and direction) of the plane relative to the
ground, and (b) how far from its intended position will it
be after 10 min if the pilot takes no corrective action.
[Hint: First draw a diagram.]

2. (II) In what direction should the pilot aim the plane in

Problem 41 so that it will fly due south?

CHAPTER 3 Kinematics in Two Dimensions; Vectors

*43,

* 44,

*47.

* 48,

N

(II) Determine the speed of the boat with respect to the
shore in Example 3-11.

(IT) A passenger on a boat moving at 1.50m/s on a still
lake walks up a flight of stairs at a speed of 0.50m/s
(Fig. 3-39). The stairs are angled at 45° pointing in the
direction of motion as shown. What is the velocity of the
passenger relative to the water?

-
dl ':{_.’-l;

gjﬁf osm/
o . S

{5 é45°

FIGURE 3-39 Problem 44.

v = 1.50 m/s
T —

(IT) A motorboat whosc speed in still water is 2.60m/s
must aim upstream at an angle of 28.5° (with respect to a
line perpendicular to the shore) in order to travel directly
across the stream. (a) What is the speed of the current?
(b) What is the resultant speed of the boat with respect to

the shore? (See Fig. 3-28.)

. (IT) A boat, whose speed in still water is 1.70 m/s, must

cross a 260-m-wide river and arrive at a point 110m
upstream from where it starts (Fig. 3-40). To do so, the
pilot must head the boat at a 45° upstream angle. What is
the speed of the river’s current?

fe—110 m —
= I[ fFinish
/
'[ /
| River
| current
260 m :
| /
—
11,5
1y
/i
Start

FIGURE 3-40 Problem 46.

(IT) A swimmer is capable of swimming 0.45m/s in still
water. (a) If she aims her body directly across a 75-m-
wide river whose current is 0.40 m/s, how far downstream
(from a point opposite her starting point) will she land?
(b) How long will it take her to reach the other side?

(I) (a) At what upstream angle must the swimmer in
Problem 47 aim, if she is to arrive at a point directly
across the stream? (b) How long would it take her?



* 49, (IIT) An airplane whose air speed is 620 km/h is supposed
to fly in a straight path 35.0° north of east. But a steady
95km/h wind is blowing from the north. In what direc-
tion should the plane head?

* 50, (IIT) An unmarked police car, traveling a constant 95 km/h,
is passed by a speeder traveling 145 km/h. Precisely 1.00 s
after the speeder passes, the policeman steps on the accel-
erator. If the police car’s acceleration is 2.00 m/s?, how
much time elapses after the police car is passed until
it overtakes the speeder (assumed moving at constant

speed)?

. (III) Assume in Problem 50 that the speeder’s speed is
not known. If the police car accelerates uniformly as
given above, and overtakes the speeder after 7.00s, what
was the speeder’s speed?

l General Problems

*52. (IIT) Two cars approach a street corner at right angles to
each other (Fig. 3-41). Car 1 travels at a speed relative to
Earth oz = 35km/h, and car 2 at wyp = 55km/h.
What is the relative velocity of car 1 as seen by car 2?
What is the velocity of car 2 relative to car 1?

FIGURE 3-41
Problem 52.

53. William Tell must split the apple atop his son’s head from
a distance of 27 m. When William aims directly at the
apple, the arrow is horizontal. At what angle must he aim
it to hit the apple if the arrow travels at a speed of 35 m/s?

54. A plumber steps out of his truck, walks 50m east and
25 m south, and then takes an elevator 10 m down into the
subbasement of a building where a bad leak is occurring.
What is the displacement of the plumber relative to his
truck? Give your answer in components, and also give the
magnitude and angles with the x axis in the vertical and

__ horizontal planes. Assume x is east, y is north, and z is up.

55/70n mountainous downhill roads, escape routes are some-
times placed to the side of the road for trucks whose
brakes might fail. Assuming a constant upward slope of
32°, calculate the horizontal and vertical components
of the acceleration of a truck that slowed from 120 km/h
to rest in 6.0s. See Fig. 3-42.

Main road

Qn‘hill

FIGURE 3-42 Problem 55.

56. What is the y component of a vector (in the xy plane)
whose magnitude is 88.5 and whose x component is 75.47
What is the direction of this vector (angle it makes with
the x axis)?

57. Raindrops make an angle 6 with the vertical when viewed
through a moving train window (Fig. 3-43). If the speed
of the train is v, what is the speed of the raindrops in the
reference frame of the Earth in which they are assumed
to fall vertically?

D

FIGURE 3-43 Problem 57,

58. A light plane is headed due south with a speed of
155 km/h relative to still air. After 1.00 hour, the pilot
notices that they have covered only 125km and their
direction is not south but southeast (45.0°). What is the
_ wind velocity?

A car moving at 95km/h passes a 1.00-km-long train
Traveling in the same direction on a track that is parallel
to the road. If the speed of the train is 75 km/h, how long
does it take the car to pass the train, and how far will the
car have traveled in this time? What are the results if the
car and train are instead traveling in opposite directions?
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60. An Olympic long jumper is capable of jumping 8.0 m.

/ Assuming his horizontal speed is 9.1 m/s as he leaves the
ground, how long is he in the air and how high does he
go? Assume that he lands standing upright—that is, the
same way he left the ground.

61. Apollo astronauts took a “nine iron” to the Moon and hit
a golf ball about 180 m! Assuming that the swing, launch
angle, and so on, were the same as on Earth where the
same astronaut could hit it only 35 m, estimate the accel-
eration due to gravity on the surface of the Moon.
(Neglect air resistance in both cases, but on the Moon
there is none!)

62. When Babe Ruth hit a homer over the 7.5-m-high right-
field fence 95m from home plate, roughly what was the
minimum speed of the ball when it left the bat? Assume
the ball was hit 1.0m above the ground and its path
initially made a 38° angle with the ground.

It,t.' The cliff divers of Acapulco push off horizontally from
rock platforms about 35 m above the water, but they must
clear rocky outcrops at water level that extend out into the
water 5.0 m from the base of the cliff directly under their
launch point. See Fig. 3—44. What minimum pushoff speed
is necessary to clear the rocks? How long are they in
the air?
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FIGURE 3-44 Problem 63.

64. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is
“launched” from a height of 2.50 m? Where will the ball
land if it just clears the net (and will it be “good” in the
sense that it lands within 7.0 m of the net)? How long will
it be in the air? See Fig. 3-45.

FIGURE 3-45
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2.50 m

Problem 64.
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15.0m

65. Spymaster Paul, flying a constant 215 km/h horizontally
in a low-flying helicopter, wants to drop secret documents
into his contact’s open car which is traveling 155 km/h on
a level highway 78.0 m below. At what angle (to the hori-
zontal) should the car be in his sights when the packet is
released (Fig. 3-46)?

215 km/t
kS ‘E';'!-,—_:!;'_‘ __________________ _r
\\\\ .!,,"0 [
b 780m
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ST
155 km/h
FIGURE 3-46 Problem 65.

66. The speed of a boat in still water is v. The boat is to make
a round trip in a river whose current travels at speed u.
Derive a formula for the time needed to make a round trip
of total distance D if the boat makes the round trip by
moving (a) upstream and back downstream, (b) directly
across the river and back. We must assume u < v; why?
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FIGURE 3-47 Problem 67.

\
({;T’) A projectile is launched from ground level to the top of a
~ cliff which is 195 m away and 155 m high (see Fig. 3-47).
If the projectile lands on top of the cliff 7.6s after it is
fired, find the initial velocity of the projectile (magnitude
and direction). Neglect air resistance.
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